Extensions 1→N→G→Q→1 with N=S3xC23 and Q=C2

Direct product G=NxQ with N=S3xC23 and Q=C2
dρLabelID
S3xC2448S3xC2^496,230

Semidirect products G=N:Q with N=S3xC23 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC23):1C2 = D6:D4φ: C2/C1C2 ⊆ Out S3xC2324(S3xC2^3):1C296,89
(S3xC23):2C2 = C23:2D6φ: C2/C1C2 ⊆ Out S3xC2324(S3xC2^3):2C296,144
(S3xC23):3C2 = C22xD12φ: C2/C1C2 ⊆ Out S3xC2348(S3xC2^3):3C296,207
(S3xC23):4C2 = C2xS3xD4φ: C2/C1C2 ⊆ Out S3xC2324(S3xC2^3):4C296,209
(S3xC23):5C2 = C22xC3:D4φ: C2/C1C2 ⊆ Out S3xC2348(S3xC2^3):5C296,219

Non-split extensions G=N.Q with N=S3xC23 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC23).1C2 = S3xC22:C4φ: C2/C1C2 ⊆ Out S3xC2324(S3xC2^3).1C296,87
(S3xC23).2C2 = C2xD6:C4φ: C2/C1C2 ⊆ Out S3xC2348(S3xC2^3).2C296,134
(S3xC23).3C2 = S3xC22xC4φ: trivial image48(S3xC2^3).3C296,206

׿
x
:
Z
F
o
wr
Q
<